
Copyright ©2004 Institute of Electrical and Electronics Engineers, Inc. Reprinted,
with permission, from 7th European Manufacturing Test Conference (EMTC),
Munich, Germany, 11 April 2005, "Testing Parametric Cores: A Multilayer Test
Program to Improve and Automate the EDA-ATE Link."

This material is posted here with permission of the IEEE. Internal or personal use
of this material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new collective
works for resale or redistribution must be obtained from the IEEE (contact pubs–
permissions@ieee.org).

By choosing to view this document, you agree to all provisions of the copyright
laws protecting it.

(Go to next page to view paper.)

TESTING PARAMETRIC CORES: A MULTI-
LAYER TEST PROGRAM TO IMPROVE AND

AUTOMATE THE EDA-ATE LINK

P. Bernardi3, A.Bertuzzi1, M. Grosso3, V. Tancorre1, S.Tritto2

1STMicroelectronics, Agrate, Italy
2Agilent Technologies, Cernusco sul Naviglio, Italy

3Politecnico di Torino, Torino, Italy

Abstract

In this paper we discuss about a “multi-
layer” test program approach. A good scenario
where this kind of technique can be used is the
handling of parametric cores. Such cores may
require several re-executions of the test
procedures, varying every time a well defined
non-deterministic part of the vectors. This
approach allows obtaining precise diagnosis
information. Even if for these cases CAD tools
providers see a large room for automating test
flow generation, currently this kind of cores
still requires a considerable amount of custom
tools (or even manual work) both on the
Electronic Design Automation (EDA) and on
the Automatic Test Equipment (ATE) side.

We’ll show how a test program could be
based on parametric procedures in order to be
reused in the design of System-on-Chips
(SoCs), and to be easily modified for
implementing several different tests or
diagnostics algorithms. As highlighted at the
end of this paper, such a flexible test program
structure would provide the best advantage
when inserted in an automated flow for test
generation, closing the loop between EDA and
ATE environments [1].

Key words: SoC, DfT, Parametric Cores,
Cost of Testing, Time to Manufacturing, EDA-
ATE link, IEEE 1450.x standard, Test Flow.

I. Introduction

The increasing complexity and multi-
functionality of SoCs have a twofold impact
on the devices maturity curve, starting from
chip design and leading to mass volume
production.

On the design side, a multi-core approach
is the best fit for building such complex SoCs,
also enabled by present and emerging
standards (e.g.: STIL or CTL) [2]; the main

advantage of this approach is the possibility to
rely on consolidated IP cores bringing their
own test access mode, beside structural
information.

On the testing side, more diagnostic
capability and faster feedback to design
environment are a key factor for shortening
Time -to-Volume and Time -to-Market in the
device lifespan.

Up to now, ATE equipment doesn’t offer
an adequate programming environment that
allows users to properly address new testing
concepts. In this field, design to manufacturing
chain has got a weak link, resulting in the need
for moving most of the ‘test intelligence’
directly on the IC. Moreover, ATE
environments capable to support the needed
DfT test strategies in a modular fashion are
required. In this direction, it is known that in
general ATE hardware and programming
software are structured in such a way that the
tester itself acts as a master (determining the
test execution) and the device is the ‘slave’.

On the contrary, for all the above reasons,
the trend moves towards having devices
driving their own test flows, so reversing the
master/slave prospective and then using low
cost/low performance testers with reduced test
data volume and improving time-to-
manufacturing window.

The more diagnosis capability is
enhanced, the more debugging activity is
straightforward in highlighting punctual or
structural failures of logic cores.

By moving diagnosis capabilities to
silicon, it is possible to define a multi-layer
structured algorithm where the lower layer
only deals with the ATE, while the others are
oriented to the data management. Considering
such a structure, device- or algorithm-
dependent variables can be programmed in a
parametric way, finally no longer requiring the
users to rewrite the test program for either
changing the device or the diagnostic

approach, but just to modify the layer(s)
concerned.

Nowadays, users update these parameters
manually. The closer target is to insert this
multi-layer tool into a more general automated
test environment IEEE 1450.x standard based,
allowing both the core parameters description
and the test flow development. The reduction
of the time for validation and debugging
phases allow users to focus on silicon
performance.

In Section II a memory BIST case is
depicted as parametric core example while in
Section III the multi-layer approach is
presented. Test time performances and
experimental results obtained on a test chip are
reported in Section IV. Finally, in Section V,
an example of generalization of this approach
as a possible framework for automating test
flow generation is proposed and conclusions
are drawn.

II. BIST of embedded memories: a
parametric core example

A “parametric core” is a core whose test
procedure is based on a mono- or bi-
directional information exchange (parameters)
between the ATE and the core. In practical
terms, two parametric cores, having the same
function, can be described by two different sets
of parameters. This kind of core, because of its
characteristics, is an ideal candidate to create
an automatic test environment that is able to
auto-generate a test flow starting from design
level device description. A parametric cores
example is given by memory arrays, equipped
with their own BIST (Built-In Self-Test)
structures. The test of embedded memories
(eMem) is mainly approached as the test of the
corresponding stand-alone devices (that is
applying stimuli and collecting test results for
reconstructing fault bitmaps); the difference
resides in the solution adopted for applying the
test algorithm (usually belonging to the March
family) to the cell matrix: BISTs are nowadays
popular for test of eMem as they provide an
embedded way to generate the test sequences
and compressing the outputs.

 Unfortunately, BIST architectures are
strongly stiff: new design of the BIST
architecture is necessary each time the
implemented test algorithm has to be changed.
Particularly, in the case of embedded
memories, where the variety of faults is really
high, flexibility in terms of applied test is
required.

In order to avoid frequent redesigns we
introduced a new architecture: the Micro
Programmable BIST (MPB) [3]. MPB

architecture relies on a small microprocessor
based on an ad-hoc instruction set suitable for
memory access. A test program describing a
word-oriented algorithm is stored in a RAM
module and re -loaded by the user with the
code describing the chosen March test.
Flexibility is guaranteed from two points of
view: easy reuse of the introduced structures
and re-programmability of the memory test
algorithm.

To make memory diagnostic powerful, DfT
features have to be added into BIST design
that usually provides only go-no-go signals,
but generally doesn’t yield information about
failure locations. The introduction of hardware
architecture compliant with the proposed
standard IEEE 1500 [4] allows optimizing the
Embedded Core Testing in a System-On-Chip
device [5].

Moreover, the use of a standard IEEE
1149.1 TAP is desirable because commercial
automation tools generally support it and this
interface represent a valid bi-directional way
for ATE-DUT communication using only five
pins.

III. Multi-Layer Test Program
Architecture

Product Engineers (PE) often spend a lot
of time in non-value-added activities, such as
converting design data into tester pattern data
or test programs developing, instead of
focusing earlier on silicon performances.
Sometime PEs have to update a part of the test
program already existing because of changing
ATE platform or because DUT has been
modified in some features like dimensions or
data bus width (in case of memory for
example). For these reasons, taking a closer
look at the portability concept and aiming at
developing a flexible software able to run tests
on parametric cores, a multi-layer architecture
has been developed; it is able to address all
major needs in terms of software re-use and
quickness during development phase.

As test case, for our multi-layer
architecture, we chose the memory BIST
(hardware or programmable) and categorized
the parameters to run a certain BIST for a
particular IC in the following classes:

1. Algorithm includes all parameter
describing the algorithm (e.g. March-n)
that tests the logic.

2. Core describes the size of the logic core
to be tested.

3. BIST has the information concerning
vector cycle numbers of input and output
data stream inside the pattern.

4. Device includes information that is
device dependent such as access pin
name.

5. ATE that the information stored depends
on the specific tester platform.

Using a multi-layer architecture, each of

the five classes highlighted above can be
stored in a correspondent module (or layer)
creating a kind of library.

Following this approach, module Core can
be seen as a library containing several entries
that describe different cuts of logic cores (core-
1, core-2, ..., core-n). In the same way, module
Algorithm is the library that contains several
items (e.g. march-1, march-2, ..., march-n),
each of them describing a specific algorithm
ensuring a specific test coverage.

Code-wise, these libraries are arrays of
structures containing the main features of each
class, as shown in Fig. 1.

Fig. 1: Example of Core and Algorithm
structures

Besides libraries in each module there are

also functions closely linked to module
management.

 Regarding the ATE dependent module, all
the routines devoted to manage ATE firmware
commands were developed. Goal of the trial
was to rely on the smallest set of ATE
hardware options and compensate the
consequent limitations with a dedicated
software tool. Let’s call this “reducing the cost
of test”.

Pure digital ATEs have a basic structure
tailored to optimize the development of test
flow mainly based on launching of patterns
and comparing device signals with expected
waveforms. Let’s call this “deterministic
scenario”.

On the contrary, the output of BIST for
logic core is based on a data stream that
depends on the functionality of the logic under
test. After a processing step, information

encoded in the output data stream allows to re-
run the algorithm focusing the BIST coverage
on the highlighted failing part and starting the
punctual diagnosis phase.

In this process ATE needs to deal with the
BIST pattern which changes depending on
BIST result. Let’s call this “not-deterministic
scenario”.

As previously said, pure digital ATEs are
not usually designed to handle such a not-
deterministic pattern. In order to properly run a
state of the art BIST it is necessary to enhance
this kind of ATEs with the basic concepts of
writing and reading logical values.

The enhanced capability of an ATE to
deal encoded information with the device is a
powerful feature that allows the deep
investigation of the silicon by means of few
low level functions (ATE dependent)
implementing two elementary operations:
reading and writing from and to DUT.

The structure of this multi-layer test
program can be seen as a master function that
links the five class modules, Fig.2. Users,
calling the master function during test flow,
can specify test environment just by means of
five input parameter (see section IV below).

BIST Master

Device lib.

Algorithm lib.

BIST lib.

Core lib.

ATE link

Design Environment & TPG

ATE

te
st

 f
lo

w

D
fT

in
fo

So
C

 in
fo

pa
tt

er
ns

ConversionConversion

Fig. 2: Multi-layer test program structure for

BIST test

Looking at the top level of this structure,
the five class modules need also to talk each
other because of functions having multi-class
dependent arguments. One function might
depend on both the core size and the
complexity of the algorithm instance.

After the creation of five libraries
containing several descriptions of algorithms,
ATE platforms, BISTs and DUT information,
users can directly insert this package into their
test flows and run the BIST test by calling the
master function which takes five parameters as
input. These parameters are pointers to arrays
of structure elements. For instance, if users
need to change ATE platform or BIST type or
March algorithm, the only modification
involves the corresponding pointer and, in case
the specified library doesn’t contain the new

struct core_type
{
 char name[..];
 int DIM_MEMORY;
 int DIM_MULTIPLEXER;
 int NBR_ROW;
 int NBR_COL;
 int WORD_LENGHT;
 … …
}

struct algorithm_type
{
 char bist[..];
 char name[..];
 char label[..];
 int start_cycle_result_at;
 int start_cycle_result;
 int start_cycle_input;
 … …
}

instance, then only the “weak” layer will have
to be updated.

IV. Experimental Analysis

In this Section a very simple test chip is
proposed as case study allowing evaluating the
effectiveness of the depicted technique.

- Case Study

The parametric cores analyzed
(manufactured using an HCMOS 0.13 µm
library) were two SRAM embedded in a
simple SoC device:

[core-1] SRAM 4Kx128
[bist-1] hardware BIST (HWB)

and
[core-2] SRAM 8Kx32
[bist-2] MPB with 64x4 RAM-code

module for storing test algorithm.

March 12N was hardwired to test core-1

instead March 12N and March 6N algorithms
were chosen to test core-2. Total area overhead
introduced by the programmable BIST is about
2% of the memory area. In Tab. 1 is reported
the total number of gates of the additional
logic for test and diagnosis: this value is
comparable with the one introduced by a
hardwired BIST approach [6] for the same
memory type. The TAP Controller and the
TAP have not been considered since they are
not related to a single core, but shared among
multiple cores present in the SOC. Anyway,
their size amounts to about 800 gates.

The programmable BIST approach does
not introduce any timing overhead and
guarantees an at-speed test.

Component # of gates

Wrapper 1,921
Processor 3,090
Ram module 162
TOTAL 5,173

Tab. 1: MPB area overhead

In order to evaluate the effectiveness of the

proposed approach the Agilent 93K SOC tester
platform was selected.

For the sake of this trial the concerned
ATE was considered just as a pure digital
system and capture memory option was not
considered because writing operations on
vector memory and reading operations from
fail memory were managed by basically
firmware command in ATE layer of our Multi-
layer test program architecture.

In practical terms, the high level concept of
passing information to the device is built on
the capability of ATE to change the parametric
value of a certain number of vector cycles
inside the pattern starting at a given vector
cycle. In the same way the high level concept
of retrieving information from the device is
built on the ATE capability of recording the
parametric value of vector cycles in a given
window starting at a certain point of the
pattern. Data output from the DUT can be
retrieved through the tester error map (a
dedicated memory for storing PASS/FAIL
information). The vectors for data comparison
have to be set to their PASS values (as from a
golden device), then any failing cycle will be
recorded in this error map and can be post-
processed in order to decode DUT BIST
report. In Fig. 3, the described diagnostic flow
for a parametric memory BIST is visually
represented.

error_detected = True;
Step = Full;
while (error_detected)
{

for (i=0 ; i<Step ; i++)
March(i);

Read (Status)
If (Status <> 0)

{
read (Err, Result);
Step = Result.step –1;
}

else
error_detected = False;

}

0 Full
Number of steps

March execution

E0

E1

E2

E3

E0.Result.step

E1.Result.step
E2.Result.step

 Fig. 3: parameter based re-executions for
memory diagnosis

HWB and MPB have different input/output

data stream structures concerning data
comparing window to get results and input
data to re-run the BIST to focus on diagnosis.

The multi-layer approach in designing the
BIST algorithm allows dealing with all aspects
of this application in a straightforward way.

Top layer (ATE interface layer) of this
structure is dedicated to controlling the overall
BIST test program main flow and multi-site
testing program directives. Main flow
algorithm can be described as in figure 4.

Layer 2,..,n-1 are devoted to give out macro
functions into basic building blocks down to
ATE interface layer.
o launch_bist_pattern : set up and run the

test, get PASS/FAIL information;
o check_bist: verifies that only BIST

dependent pins fails;
o get_result: reads error map and extract

BIST result;
o collect_data: elaborates BIST result;

o new_input_bist: new BIST input to move
BIST focus on failing parts;

o run_diagnosis : performs diagnosis;
o class_device: bins device.

bist_done = 0

launch_bist_pattern();

start BIST

end BIST

bist_done g0 ?

all sites ?

check_bist();
get_result();
collect_data();
new_input_bist();

bist_done = check_flag();

run_diagnosis();
class_device();
restore_pattern();

no
yes

n o
yes

Fig. 4: BIST test flow

Bottom layer includes all functions that are
ATE dependent. These functions drive the
flow of firmware command to/from the ATE.
Main functions are capturing data from the
device and write data into the device.

Of course, also the way the BIST
procedure is entered through a testing program
call and the way the BIST procedure is
concluded by sending the binning to the test
program are ATE dependent. From a
functional concept point of view ATE
firmware command are both on the very top
level and bottom level of this structure.

- Results

Generally speaking, a BIST test, in our
multi-layer test program vision, can be
described as follow:

BIST_test-n = master_function(device-n,
core-n, bist-n, algorithm-n, tester-n).

That means that it’s possible to identify a
test by a string of five parameters. So in our
case study we had three different scenarios:

1. hwb test: master_function(device-1,

core-1, bist-1, alg-1, tester-1).
2. mpb1 test: master_function(device-1,

core-2, bist-2, alg-2, tester-1).
3. mpb2 test: master_function(device-1,

core-2, bist-2, alg-1, tester-1).

Where:
hwb is an hardware BIST (March 12N)

mpb1 is a Micro Prog. BIST (March 6N)
mpb2 is a Micro Prog. BIST (March 12N)

Using an Agilent platform (SOC 93000
C400) equipped with a workstation HP C3750
(2 Gbytes of RAM and processor running at
850 MHz) we tested six lots (EWS). Timing
results for good dice are showed in Tab. 2.

Patterns’ frequency: 100MHz

Average Timing Table: BIST test on good dice
Lot Good Go/noGo [ms] Multi-layer Alg. [ms]

 hwb mpb2 hwb mpb2
1 938 1.614 2.630 2.065 3.097
2 1042 1.630 2.637 2.073 3.096
3 1063 1.655 2.656 2.112 3.096
4 883 1.611 2.633 2.056 3.050
5 894 1.631 2.640 2.073 3.081
6 1138 1.648 2.667 2.085 3.090

Tab. 2: Average timing for BIST test

Notice that previous timings refer to a

single run, so these measures highlight that,
testing SRAMs by means of our multi-layer
algorithm, which includes diagnostic features,
leads to a test time overhead of about 0.450 ms
with respect to a simple go/nogo test using the
same pattern implemented in a traditional way
(i.e. just PASS/FAIL without any diagnostic
result).

When a memory fails a BIST test, the
BIST has to be run several times for collecting
failures and then giving diagnostic result. In
order to evaluate the average time overhead for
each run when a fail is present in the memory
the mpb2 test in diagnostic mode was used.
Tab. 3 reports some cases analysed.

Patterns’ frequency: 100MHz

MPB Multi-layer Algorithm : Failing dice (mpb2)
Fail words runs Diag. Result Test Time [ms]

 Data collec t. Diagnosis
8 8 spot 34.488 0.413
14 14 spot 60.256 0.487

14,336 20 cluster 86.040 0.492
10,752 20 column 85.960 0.498

Tab. 3: Test time for diagnosis by Multi-layer

algorithm

From the previous table it is possible to
derive that the number of runs depends from
number of fails (upper limit was fixed to 20)
and the average test time is about 4.3 ms/run
using Multi-layer algorithm while by means of
a traditional go/nogo test using the same
algorithm (March 12N) the value is about 2.6
ms/run.

Practically using our Multi-layer algorithm
the time overhead is about 1.7ms/run (1.2
ms/run due for storing fails during data
collection phase), instead the time for
diagnosis is negligible and of course fail-
independent: about 0.5 ms.

V. Next developments and
Conclusions

The target of this work is to improve the
link between CAD design simulations and
ATE development environment. Efforts need
to be focused on automatism.

The set of parameters that describes the
device and silicon functionality find a common
language description in CTL (Core -Test-
Language: IEEE 1450.6 standard) [7]. CTL is
a standard format to describe intellectual
property (IP) core and SoC test information.
Moreover, another standard language (IEEE
1450.4) [2] contains the definition of the data
blocks necessary to specify the sequence of
activities that are to be performed on each
device in order to “test” it. ATE environment
should take advantage from these descriptions
in trying to customize the testing procedures
on which the testing program is based. On
ATE side, to enable this process, efforts need
to be focused on IEEE 1450.x standards reader
tools. Referring to multi-layer approach, if a
CTL description of parametric core is
available, CTL reader should provide
parameters’ values for updating libraries and
1450.4-reader tool would define procedures
being in each layer. In this way the EDA-ATE
link would be really automated. Design of so–
called “structural testers” is based on these
concepts; so, on this kind of equipments, test
programs development should be ATE
independent and the ATE-link module in our
multi-layer architecture would be useless.

In this paper we proposed a simple multi-
layer algorithm structure that, paying the price
of 1.7 ms/run test time overhead (worst case),
can diagnose topological memory fails (few
runs needed) and, most important, it was built
in a DUT-independent and ATE-independent
way to be compliant with new IEEE 1450.x
standards in order to automate the EDA-ATE
link.

VI. References

[1] D. Appello, P. Bernardi, M. Grosso, M.
Rebaudengo, M. Sonza Reorda, V. Tancorre,
“STAT: a tool for supporting the test of
complex SoCs”, Proposed to IEEE
International Test Conference ITC 2005

[2] IEEE 1450 Standard Test Interface
Language(STIL),http://grouper.ieee.org/groups
/1450/

[3] D. Appello, P. Bernardi, M. Rebaudengo,
M. Sonza Reorda, V. Tancorre, “On the
diagnosis of embedded memory cores through

Programmable BIST”, IEEE International
Workshop on Test Resource Partitioning, 2004

[4] Draft standard for Embedded Core Test
IEEE P1500/D0.7, IEEE, 2003

[5] D. Appello, F. Corno, M. Giovinetto, M.
Rebaudengo, M. Sonza Reorda, “A P1500
compliant architecture for BIST-based
Diagnosis of embedded RAMs”, IEEE Asian
Test Symposium, 2001, pp. 97–102

[6] D. Appello, A. Fudoli, F. Corno, M.
Rebaudengo, M. Sonza Reorda, V. Tancorre,
“A BIST-based Solution for the Diagnosis of
Embedded Memories Adopting Images
Processing Techniques”, IEEE International
On-Line Testing Workshop, 2002, pp.112-116

[7] R. Kapur, “CTL For Test Information Of
Digital ICs”, Kluwer Academic Publishers,
USA, 2003

Biography

Paolo Bernardi received the M.S. degree
in Computer Science Engineering from the
Politecnico di Torino in 2002. He is currentlya
Phd student in Computer Science and
Automation. His main interests includes SoC
testing & diagnosis, fault tolerant systems and
programmable logics reliability evaluation.

Adriano Bertuzzi has been working as
testing engineer mainly on mixed signal Ics
and DFT activities for VLSI products. Present
activity is focused on product engineering.

Michelangelo Grosso is currently a PhD
student in Computer Science and Automation
at the Politecnico di Torino, where he received
the electronical engineering degree (summa
cum laude) in 2004. His research interests
include testing and diagnosis of electronic
systems, in particular DfT design and software
tools development for SoCs test and debug.

Vincenzo Tancorre is a design-to-test
engineer in the Testing Technology Center at
STMicroelectronics. His research interests
include test-related process monitoring using
diagnostic solutions for memories and
unstructured logic. Tancorre has a BS in
electrical engineering from Politecnico di Bari
(Italy).

Simondavide Tritto graduated in
Electronic Engineering at the University of
Pisa in 1995, is working at Agilent
Technologies as an Application Engineer on
93000 SOC tester since 2001, mainly focusing
on DfT techniques, RF and High-speed digital
devices

