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Abstract 

In this paper we discuss about a “multi-
layer” test program approach. A good scenario 
where this kind of technique can be used is the 
handling of parametric cores. Such cores may 
require several re-executions of the test 
procedures, varying every time a well defined 
non-deterministic part of the vectors. This 
approach allows obtaining precise diagnosis 
information. Even if for these cases CAD tools 
providers see a large room for automating test 
flow generation, currently this kind of cores 
still requires a considerable amount of custom 
tools (or even manual work) both on the 
Electronic Design Automation (EDA) and on 
the Automatic Test Equipment (ATE) side. 

We’ll show how a test program could be 
based on parametric procedures in order to be 
reused in the design of System-on-Chips 
(SoCs), and to be easily modified for 
implementing several different tests or 
diagnostics algorithms. As highlighted at the 
end of this paper, such a flexible test program 
structure would provide the best advantage 
when inserted in an automated flow for test 
generation, closing the loop between EDA and 
ATE environments [1]. 
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I. Introduction 

The increasing complexity and multi-
functionality of SoCs have a twofold impact 
on the devices maturity curve, starting from 
chip design and leading to mass volume 
production. 

On the design side, a multi-core approach 
is the best fit for building such complex SoCs, 
also enabled by present and emerging 
standards (e.g.: STIL or CTL) [2]; the main 

advantage of this approach is the possibility to 
rely on consolidated IP cores bringing their 
own test access mode, beside structural 
information. 

On the testing side, more diagnostic 
capability and faster feedback to design 
environment are a key factor for shortening 
Time -to-Volume and Time -to-Market in the 
device lifespan.   

Up to now, ATE equipment doesn’t offer 
an adequate programming environment that 
allows users to properly address new testing 
concepts. In this field, design to manufacturing 
chain has got a weak link, resulting in the need 
for moving most of the ‘test intelligence’ 
directly on the IC. Moreover, ATE 
environments capable to support the needed 
DfT test strategies in a modular fashion are 
required. In this direction, it is known that in 
general ATE hardware and programming 
software are structured in such a way that the 
tester itself acts as a master (determining the 
test execution) and the device is the ‘slave’. 

On the contrary, for all the above reasons, 
the trend moves towards having devices 
driving their own test flows, so reversing the 
master/slave prospective and then using low 
cost/low performance testers with reduced test 
data volume and improving time-to-
manufacturing window. 

The more diagnosis capability is 
enhanced, the more debugging activity is 
straightforward in highlighting punctual or 
structural failures of logic cores. 

By moving diagnosis capabilities to 
silicon, it is  possible to define a multi-layer 
structured algorithm where the lower layer 
only deals with the ATE, while the others are 
oriented to the data management. Considering 
such a structure, device- or algorithm-
dependent variables can be programmed in a 
parametric way, finally no longer requiring the 
users to rewrite the test program for either 
changing the device or the diagnostic 



approach, but just to modify the layer(s) 
concerned. 

Nowadays, users update these parameters 
manually. The closer target is to insert this 
multi-layer tool into a more general automated 
test environment IEEE 1450.x standard based, 
allowing both the core parameters description 
and the test flow development. The reduction 
of the time for validation and debugging 
phases allow users to focus on silicon 
performance. 

In Section II a memory BIST case is 
depicted as parametric core example while in 
Section III the multi-layer approach is 
presented. Test time performances and 
experimental results obtained on a test chip are 
reported in Section IV. Finally, in Section V, 
an example of generalization of this approach 
as a possible framework for automating test 
flow generation is proposed and conclusions 
are drawn. 

II. BIST of embedded memories: a 
parametric core example 

A “parametric core” is a core whose test 
procedure is based on a mono- or bi-
directional information exchange (parameters) 
between the ATE and the core. In practical 
terms, two parametric cores, having the same 
function, can be described by two different sets 
of parameters. This kind of core, because of its 
characteristics, is an ideal candidate to create 
an automatic test environment that is able to 
auto-generate a test flow starting from design 
level device description. A parametric cores 
example is given by memory arrays, equipped 
with their own BIST (Built-In Self-Test) 
structures. The test of embedded memories 
(eMem) is mainly approached as the test of the 
corresponding stand-alone devices (that is 
applying stimuli and collecting test results for 
reconstructing fault bitmaps); the difference 
resides in the solution adopted for applying the 
test algorithm (usually belonging to the March 
family) to the cell matrix: BISTs are nowadays 
popular for test of eMem as they provide an 
embedded way to generate the test sequences 
and compressing the outputs.  

 Unfortunately, BIST architectures are 
strongly stiff: new design of the BIST 
architecture is necessary each time the 
implemented test algorithm has to be changed. 
Particularly, in the case of embedded 
memories, where the variety of faults is really 
high, flexibility in terms of applied test is 
required.  

In order to avoid frequent redesigns we 
introduced a new architecture: the Micro 
Programmable BIST (MPB) [3]. MPB 

architecture relies on a small microprocessor 
based on an ad-hoc instruction set suitable for 
memory access. A test program describing a 
word-oriented algorithm is stored in a RAM 
module and re -loaded by the user with the 
code describing the chosen March test. 
Flexibility is guaranteed from two points of 
view: easy reuse of the introduced structures 
and re-programmability of the memory test 
algorithm.  

To make memory diagnostic powerful, DfT 
features have to be added into BIST design 
that usually provides only go-no-go signals, 
but generally doesn’t yield information about 
failure locations. The introduction of hardware 
architecture compliant with the proposed 
standard IEEE 1500 [4] allows optimizing the 
Embedded Core Testing in a System-On-Chip 
device [5]. 

Moreover, the use of a standard IEEE 
1149.1 TAP is desirable because commercial 
automation tools generally support it and this 
interface represent a valid bi-directional way 
for ATE-DUT communication using only five 
pins.  

III. Multi-Layer Test Program 
Architecture  

Product Engineers (PE) often spend a lot 
of time in non-value-added activities, such as 
converting design data into tester pattern data 
or test programs developing, instead of 
focusing earlier on silicon performances. 
Sometime PEs have to update a part of the test 
program already existing because of changing 
ATE platform or because DUT has been 
modified in some features like dimensions or 
data bus width (in case of memory for 
example).  For these reasons, taking a closer 
look at the portability concept and aiming at 
developing a flexible software able to run tests 
on parametric cores, a multi-layer architecture 
has been developed; it is able to address all 
major needs in terms of software re-use and 
quickness during development phase. 

As test case, for our multi-layer 
architecture, we chose the memory BIST 
(hardware or programmable) and categorized 
the parameters to run a certain BIST for a 
particular IC in the following classes: 
 

1. Algorithm includes all parameter 
describing the algorithm (e.g. March-n) 
that tests the logic. 

2. Core describes the size of the logic core 
to be tested. 

3. BIST has the information concerning 
vector cycle numbers of input and output 
data stream inside the pattern. 



4. Device includes information that is 
device dependent such as access pin 
name. 

5. ATE that the information stored depends 
on the specific tester platform. 

 
Using a multi-layer architecture, each of 

the five classes highlighted above can be 
stored in a correspondent module (or layer) 
creating a kind of library. 

Following this approach, module Core can 
be seen as a library containing several entries 
that describe different cuts of logic cores (core-
1, core-2, ..., core-n). In the same way, module 
Algorithm is the library that contains several 
items (e.g. march-1, march-2, ..., march-n), 
each of them describing a specific algorithm 
ensuring a specific test coverage. 

Code-wise, these libraries are arrays of 
structures containing the main features of each 
class, as shown in Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Example of Core and Algorithm 
structures 

 
Besides libraries in each module there are 

also functions closely linked to module 
management. 

 Regarding the ATE dependent module, all 
the routines devoted to manage ATE firmware 
commands were developed. Goal of the trial 
was to rely on the smallest set of ATE 
hardware options and compensate the 
consequent limitations with a dedicated 
software tool. Let’s call this “reducing the cost 
of test”. 

Pure digital ATEs have a basic structure 
tailored to optimize the development of test 
flow mainly based on launching of patterns 
and comparing device signals with expected 
waveforms. Let’s call this “deterministic 
scenario”. 

On the contrary, the output of BIST for 
logic core is based on a data stream that 
depends on the functionality of the logic under 
test. After a processing step, information 

encoded in the output data stream allows to re-
run the algorithm focusing the BIST coverage 
on the highlighted failing part and starting the 
punctual diagnosis phase. 

In this process ATE needs to deal with the 
BIST pattern which changes depending on 
BIST result. Let’s call this “not-deterministic 
scenario”. 

As previously said, pure digital ATEs are 
not usually designed to handle such a not-
deterministic pattern. In order to properly run a 
state of the art BIST it is necessary to enhance 
this kind of ATEs with the basic concepts of 
writing and reading logical values. 

The enhanced capability of an ATE to 
deal encoded information with the device is a 
powerful feature that allows the deep 
investigation of the silicon by means of few 
low level functions (ATE dependent) 
implementing two elementary operations: 
reading and writing from and to DUT.  

The structure of this multi-layer test 
program can be seen as a master function that 
links the five class modules, Fig.2. Users, 
calling the master function during test flow, 
can specify test environment just by means of 
five input parameter (see section IV below). 
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Fig. 2: Multi-layer test program structure for 

BIST test 
 

Looking at the top level of this structure, 
the five class modules need also to talk each 
other because of functions having multi-class 
dependent arguments. One function might 
depend on both the core size and the 
complexity of the algorithm instance. 

After the creation of five libraries 
containing several descriptions of algorithms, 
ATE platforms, BISTs and DUT information, 
users can directly insert this package into their 
test flows and run the BIST test by calling the 
master function which takes five parameters as 
input. These parameters are pointers to arrays 
of structure elements. For instance, if users 
need to change ATE platform or BIST type or 
March algorithm, the only modification 
involves the corresponding pointer and, in case 
the specified library doesn’t contain the new 

struct core_type 
{ 
  char name[..]; 
  int  DIM_MEMORY;  
  int  DIM_MULTIPLEXER; 
  int  NBR_ROW; 
  int  NBR_COL; 
  int  WORD_LENGHT; 
  …         … 
} 
 
struct algorithm_type 
{ 
  char bist[..]; 
  char  name[..]; 
  char  label[..]; 
  int  start_cycle_result_at; 
  int  start_cycle_result; 
  int  start_cycle_input; 
  …         … 
} 

 



instance, then only the “weak” layer will have 
to be updated. 

IV. Experimental Analysis 

In this Section a very simple test chip is 
proposed as case study allowing evaluating the 
effectiveness of the depicted technique. 
 
- Case Study 

The parametric cores analyzed 
(manufactured using an HCMOS 0.13 µm 
library) were two SRAM embedded in a 
simple SoC device:  

 
[core-1]  SRAM 4Kx128  
[bist-1]   hardware BIST (HWB) 

and  
[core-2]  SRAM 8Kx32 
[bist-2]   MPB with 64x4 RAM-code 

module for storing test algorithm. 
 
March 12N was hardwired to test core-1 

instead March 12N and March 6N algorithms 
were chosen to test core-2. Total area overhead 
introduced by the programmable BIST is about 
2% of the memory area. In Tab. 1 is reported 
the total number of gates of the additional 
logic for test and diagnosis: this value is 
comparable with the one introduced by a 
hardwired BIST approach [6] for the same 
memory type. The TAP Controller and the 
TAP have not been considered since they are 
not related to a single core, but shared among 
multiple cores present in the SOC. Anyway, 
their size amounts to about 800 gates. 

The programmable BIST approach does 
not introduce any timing overhead and 
guarantees an at-speed test. 

 
Component # of gates 

Wrapper 1,921 
Processor 3,090 
Ram module 162 
TOTAL 5,173 

 
Tab. 1: MPB area overhead 

 
In order to evaluate the effectiveness of the 

proposed approach the Agilent 93K SOC tester 
platform was selected.  

For the sake of this trial the concerned 
ATE was considered just as a pure digital 
system and capture memory option was not 
considered because writing operations on 
vector memory and reading operations from 
fail memory were managed by basically 
firmware command in ATE layer of our Multi-
layer test program architecture. 

In practical terms, the high level concept of 
passing information to the device is built on 
the capability of ATE to change the parametric 
value of a certain number of vector cycles 
inside the pattern starting at a given vector 
cycle. In the same way the high level concept 
of retrieving information from the device is 
built on the ATE capability of recording the 
parametric value of vector cycles in a given 
window starting at a certain point of the 
pattern. Data output from the DUT can be 
retrieved through the tester error map (a 
dedicated memory for storing PASS/FAIL 
information). The vectors for data comparison 
have to be set to their PASS values (as from a 
golden device), then any failing cycle will be 
recorded in this error map and can be post-
processed in order to decode DUT BIST 
report. In Fig. 3, the described diagnostic flow 
for a parametric memory BIST is visually 
represented. 

 
error_detected = True;
Step = Full;
while (error_detected)
{

for (i=0 ; i<Step ; i++)
March(i);

Read (Status)
If (Status <> 0)

{
read (Err, Result);
Step = Result.step –1;
}

else
error_detected = False;

}

0 Full
Number of steps

March execution

E0

E1

E2

E3

E0.Result.step

E1.Result.step
E2.Result.step

 Fig. 3: parameter based re-executions for 
memory diagnosis  

 
HWB and MPB have different input/output 

data stream structures concerning data 
comparing window to get results and input 
data to re-run the BIST to focus on diagnosis. 

The multi-layer approach in designing the 
BIST algorithm allows dealing with all aspects 
of this application in a straightforward way. 
 
Top layer (ATE interface layer) of this 
structure is dedicated to controlling the overall 
BIST test program main flow and multi-site 
testing program directives. Main flow 
algorithm can be described as in figure 4. 
 
Layer 2,..,n-1 are devoted to give out macro 
functions into basic building blocks down to 
ATE interface layer. 
o launch_bist_pattern : set up and run the 

test, get PASS/FAIL information; 
o check_bist: verifies that only BIST 

dependent pins fails; 
o get_result: reads error map and extract 

BIST result; 
o collect_data: elaborates BIST result; 



o new_input_bist: new BIST input to move 
BIST focus on failing parts; 

o run_diagnosis : performs diagnosis; 
o class_device: bins device. 
 

bist_done = 0

launch_bist_pattern();

start BIST

end BIST

bist_done g0 ?

all sites ?

check_bist();
get_result();
collect_data();
new_input_bist();

bist_done = check_flag();

run_diagnosis();
class_device();
restore_pattern();

no
yes

n o
yes

 
Fig. 4: BIST test flow 

 
Bottom layer includes all functions that are 
ATE dependent. These functions drive the 
flow of firmware command to/from the ATE. 
Main functions are capturing data from the 
device and write data into the device. 

Of course, also the way the BIST 
procedure is entered through a testing program 
call and the way the BIST procedure is 
concluded by sending the binning to the test 
program are ATE dependent. From a 
functional concept point of view ATE 
firmware command are both on the very top 
level and bottom level of this structure. 
 
- Results 

Generally speaking, a BIST test, in our 
multi-layer test program vision, can be 
described as follow: 
 
BIST_test-n = master_function(device-n, 
core-n, bist-n, algorithm-n, tester-n). 
 

That means that it’s possible to identify a 
test by a string of five parameters. So in our 
case study we had three different scenarios: 
 
1. hwb  test: master_function(device-1, 

core-1, bist-1, alg-1, tester-1). 
2. mpb1 test: master_function(device-1, 

core-2, bist-2, alg-2, tester-1). 
3. mpb2 test: master_function(device-1, 

core-2, bist-2, alg-1, tester-1). 
 
Where: 
hwb is an hardware BIST (March 12N) 

mpb1 is a Micro Prog. BIST (March 6N) 
mpb2 is a Micro Prog. BIST (March 12N) 
 

Using an Agilent platform (SOC 93000 
C400) equipped with a workstation HP C3750 
(2 Gbytes of RAM and processor running at 
850 MHz) we tested six lots (EWS). Timing 
results for good dice are showed in Tab. 2. 
 
Patterns’ frequency: 100MHz 

Average Timing Table:  BIST test on good dice 
Lot Good  Go/noGo [ms]  Multi-layer Alg. [ms] 

 hwb mpb2 hwb mpb2 
1 938 1.614 2.630 2.065 3.097 
2 1042 1.630 2.637 2.073 3.096 
3 1063 1.655 2.656 2.112 3.096 
4 883 1.611 2.633 2.056 3.050 
5 894 1.631 2.640 2.073 3.081 
6 1138 1.648 2.667 2.085 3.090 

  
Tab. 2: Average timing for BIST test 

 
Notice that previous timings refer to a 

single run, so these measures highlight that, 
testing SRAMs by means of our multi-layer 
algorithm, which includes diagnostic features, 
leads to a test time overhead of about 0.450 ms 
with respect to a simple go/nogo test using the 
same pattern implemented in a traditional way 
(i.e. just PASS/FAIL without any diagnostic 
result). 

When a memory fails a BIST test, the 
BIST has to be run several times for collecting 
failures and then giving diagnostic result. In 
order to evaluate the average time overhead for 
each run when a fail is present in the memory 
the mpb2 test in diagnostic mode was used. 
Tab. 3 reports some cases analysed. 
 
Patterns’ frequency: 100MHz 

MPB  Multi-layer Algorithm :   Failing dice (mpb2)  
Fail words runs Diag. Result Test Time [ms]  

 Data collec t. Diagnosis 
8 8 spot 34.488 0.413 
14 14 spot 60.256 0.487 

14,336 20 cluster 86.040 0.492 
10,752 20 column 85.960 0.498 

 
Tab. 3: Test time for diagnosis by Multi-layer 

algorithm 
 

From the previous table it is possible to 
derive that the number of runs depends from 
number of fails (upper limit was fixed to 20) 
and the average test time is about 4.3 ms/run 
using Multi-layer algorithm while by means of 
a traditional go/nogo test using the same 
algorithm (March 12N) the value is about 2.6 
ms/run. 

Practically using our Multi-layer algorithm 
the time overhead is about 1.7ms/run (1.2 
ms/run due for storing fails during data 
collection phase), instead the time for 
diagnosis is negligible and of course fail-
independent: about 0.5 ms. 



V. Next developments and 
Conclusions  

The target of this work is to improve the 
link between CAD design simulations and 
ATE development environment. Efforts need 
to be focused on automatism. 

The set of parameters that describes the 
device and silicon functionality find a common 
language description in CTL (Core -Test-
Language: IEEE 1450.6 standard) [7]. CTL is 
a standard format to describe intellectual 
property (IP) core and SoC test information. 
Moreover, another standard language (IEEE 
1450.4) [2] contains the definition of the data 
blocks necessary to specify the sequence of 
activities that are to be performed on each 
device in order to “test” it. ATE environment 
should take advantage from these descriptions 
in trying to customize the testing procedures 
on which the testing program is  based. On 
ATE side, to enable this process, efforts need 
to be focused on IEEE 1450.x standards reader 
tools. Referring to multi-layer approach, if a 
CTL description of parametric core is 
available, CTL reader should provide 
parameters’ values for updating libraries and 
1450.4-reader tool would define procedures 
being in each layer. In this way the EDA-ATE 
link would be really automated. Design of so–
called “structural testers” is based on these 
concepts; so, on this kind of equipments, test 
programs development should be ATE 
independent and the ATE-link module in our 
multi-layer architecture would be useless. 

In this paper we proposed a simple multi-
layer algorithm structure that, paying the price 
of 1.7 ms/run test time overhead (worst case), 
can diagnose topological memory fails (few 
runs needed) and, most important, it was built 
in a DUT-independent and ATE-independent 
way to be compliant with new IEEE 1450.x 
standards in order to automate the EDA-ATE 
link. 

VI. References 

[1] D. Appello, P. Bernardi, M. Grosso, M. 
Rebaudengo, M. Sonza Reorda, V. Tancorre, 
“STAT: a tool for supporting the test of 
complex SoCs”, Proposed to IEEE 
International Test Conference ITC 2005 
 
[2] IEEE 1450 Standard Test Interface 
Language(STIL),http://grouper.ieee.org/groups
/1450/ 
 
[3] D. Appello, P. Bernardi, M. Rebaudengo, 
M. Sonza Reorda, V. Tancorre, “On the 
diagnosis of embedded memory cores through 

Programmable BIST”, IEEE International 
Workshop on Test Resource Partitioning, 2004 
 
[4] Draft standard for Embedded Core Test 
IEEE P1500/D0.7, IEEE, 2003 
 
[5]  D. Appello, F. Corno, M. Giovinetto, M. 
Rebaudengo, M. Sonza Reorda, “A P1500 
compliant architecture for BIST-based 
Diagnosis of embedded RAMs”, IEEE Asian 
Test Symposium, 2001, pp. 97–102 
 
[6] D. Appello, A. Fudoli, F. Corno, M. 
Rebaudengo, M. Sonza Reorda, V. Tancorre, 
“A BIST-based Solution for the Diagnosis of 
Embedded Memories Adopting Images 
Processing Techniques”, IEEE International 
On-Line Testing Workshop, 2002, pp.112-116 
 
[7] R. Kapur, “CTL For Test Information Of 
Digital ICs”, Kluwer Academic Publishers, 
USA, 2003 
 
Biography 

Paolo Bernardi received the M.S. degree 
in Computer Science Engineering from the 
Politecnico di Torino in 2002. He is currentlya 
Phd student in Computer Science and 
Automation. His main interests includes SoC 
testing & diagnosis, fault tolerant systems and 
programmable logics reliability evaluation. 

Adriano Bertuzzi has been working as 
testing engineer mainly on mixed signal Ics 
and DFT activities for VLSI products. Present 
activity is focused on product engineering. 

Michelangelo Grosso is currently a PhD 
student in Computer Science and Automation 
at the Politecnico di Torino, where he received 
the electronical engineering degree (summa 
cum laude) in 2004. His research interests 
include testing and diagnosis of electronic 
systems, in particular DfT design and software 
tools development for SoCs test and debug. 

Vincenzo Tancorre is a design-to-test 
engineer in the Testing Technology Center at 
STMicroelectronics. His research interests 
include test-related process monitoring using 
diagnostic solutions for memories and 
unstructured logic. Tancorre has a BS in 
electrical engineering from Politecnico di Bari 
(Italy). 

Simondavide Tritto graduated in 
Electronic Engineering at the University of 
Pisa in 1995, is working at Agilent 
Technologies as an Application Engineer on 
93000 SOC tester since 2001, mainly focusing 
on DfT techniques, RF and High-speed digital 
devices 
 


